Partition identities arising from theta function identities
نویسندگان
چکیده
منابع مشابه
Partition Identities Arising from Theta Function Identities
The authors show that certain theta function identities of Schröter and Ramanujan imply elegant partition identities.
متن کاملPartition identities arising from involutions
We give a simple combinatorial proof of three identities of Warnaar. The proofs exploit involutions due to Franklin and Schur.
متن کاملIdentities from Partition Involutions
Subbarao and Andrews have observed that the combinatorial technique used by F. Franklin to prove Eulers famous partition identity (l-x)(l-x)(l-x)(l-x*) ••• = 1-x-x +x +x -x -x + ••• can be applied to prove the more general formula l-x-xy(l-xy) -xy(±-xy)(±-xy) xy (1 xy) (1 xy) (1 xy) = 1 -x-xy+xy+xy -xy -xy + • •• which reduces to Eulers when y = 1. This note shows that several finite versions o...
متن کاملPartition Identities
A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ = (λ1, λ2, . . . , λk) of non-negative integers λi such that ∑k i=1 λi = n. The λi’s are the parts of the partition λ. Integer partitions are of particular interest in combinatorics, partly because many profound questions concerning integer partitions, solved and unsolved, are easily stated, but not ...
متن کاملPartition Identities for the Multiple Zeta Function
We define a class of expressions for the multiple zeta function, and show how to determine whether an expression in the class vanishes identically. The class of such identities, which we call partition identities, is shown to coincide with the class of identities that can be derived as a consequence of the stuffle multiplication rule for multiple zeta values.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Sinica, English Series
سال: 2008
ISSN: 1439-8516,1439-7617
DOI: 10.1007/s10114-007-0960-6